
Semi-Supervised Learning for Vision-and-Language Tasks using MixMatch

Kalpesh Krishna
kalpesh@cs.umass.edu

Videsh Suman
vsuman@cs.umass.edu

Abstract

Semi-supervised learning algorithms attempt to train
a model with limited labeled data by leveraging a large
amount of unlabelled samples . However, there is lim-
ited literature on using such a strategy for visual-language
tasks, mainly due to the complexity and the discreteness of
the input space. We attempt to reformulate MixMatch, a
recently proposed semi-supervised learning strategy, on a
state-of-the-art multi-modal framework LXMERT, and re-
port the performance on the NLVR2 dataset. We compare
these results with suitable baseline experiments. To assess
the applicability of textual interpolation, we conduct an in-
teresting experiment on GPT-2. Towards the end, we pro-
pose two more modifications that were planned but couldn’t
be executed due to the constraint of time.

1. Introduction

Deep neural networks, while quite successful, are data
hungry in supervised settings. They typically require large
hand-curated datasets where domain experts label the map-
ping from the input to the output. The large scale of the
datasets is critical to train deep neural networks due to the
large number of learnable parameters. Building these large
datasets is expensive and often impractical.

To tackle this issue, semi-supervised learning (SSL) [3]
algorithms have been developed, which use large amounts
of unlabelled data, in addition to some labelled data, to learn
meaningful semantics in the input space. Very recently, a
holistic SSL strategy MixMatch [2] has been shown to sig-
nificantly improve the image classification performance in
semi-supervised settings. MixMatch is based on three key
SSL paradigms — 1) data augmentation via input pertur-
bation; 2) guessing low-entropy labels for data augmented
unlabeled examples; 3) linear interpolation of labeled and
unlabeled examples in both input and output space using
mixup [24].

While MixMatch works well for image classification, it
is non-trivial to extend this algorithm to more complex in-
put spaces (like multi-modal vision + language), and more
complex output spaces (beyond classification like structured

prediction or text generation). For these tasks, each of the
three SSL principles used by MixMatch cannot be used in
their original form — 1) input perturbation is hard for tex-
tual inputs since it is important to preserve a grammatically
valid input; 2) for text generation tasks like Visual Question
Answering [1] entropy minimization is non-trivial since the
output space is discrete and unbounded; 3) text cannot be
linearly interpolated due to the discrete nature of the input
space.

In this work, we attempt to reformulate the MixMatch
pipeline for multi-modal vision+language tasks. We focus
on a recently proposed vision-and-language cross-modality
framework LXMERT [17]. To tackle the above mentioned
issues, we conduct the following experiments — mixup in-
terpolation of input sentences in latent space through a mod-
ified implementation of [15] on GPT2 [12]; mixup interpo-
lation of the encoded cross-modal features; the MixMatch
pipeline incorporating these modifications. We leave two
important ideas for future — perturbation of the visual and
textual embeddings by adding noise; moving the mixup in-
terpolation step to the embedding space before the LXMERT
encoders. We have open-sourced our current implementa-
tion.1

2. Related Work
There is a large body of literature on semi-supervised

learning methods, however we focus only on some of the
more recent ideas which MixMatch builds upon. To-
wards the end of this section, we also discuss some of the
advances in building BERT-style multi-modal frameworks
that have improved the state-of-the-art on most vision-and-
language tasks by a significant margin compared to the pre-
vious methods.

2.1. Paradigms of Semi-Supervised Learning

Many recent approaches add an SSL loss term which is
computed on unlabeled data and seeks to induce generaliza-
tion towards unseen data. In much of the recent work, this
loss term belongs to one of the three classes: consistency
regularization — which encourages the model to produce

1https://github.com/martiansideofthemoon/
mixmatch_lxmert

1

https://github.com/martiansideofthemoon/mixmatch_lxmert
https://github.com/martiansideofthemoon/mixmatch_lxmert

a similar output distribution with perturbed inputs; entropy
minimization [7] — which encourages the model to make
confident predictions on unlabeled data; and generic reg-
ularization –— which encourages the model to generalize
well on the unseen data and avoid overfitting the training
data.

2.1.1 Consistency Regularization

A very common practice in supervised machine learning
pipelines is data augmentation, which seeks to transform
the datapoints in their input space, keeping the output la-
bels unaffected. Such a regularization technique can artifi-
cially expand the size of the training set, and induce a more
robust learning to the model. In the context of SSL, data
augmentation promotes consistency regularization by lever-
aging the idea that a classifier should output the same class
distribution for an unlabeled example even after it has been
augmented. More formally, consistency regularization en-
forces that an unlabeled sample x should be classified the
same as any augmentation of itself aug(x). For example,
in image classification, it is common to add noise or elasti-
cally deform an input image, that can significantly change
the overall pixel content without change its label. Consider
a generic model pm(y|x; θ) that obtains a distribution over
class labels y for an input x and parameters θ. In a simplis-
tic case of SSL, for the unlabeled datapoints x, [14] adds the
loss term,

||pm(y | aug(x); θ)− pm(y | aug(x); θ)||22 (1)

Note that the two terms in eq. (1) are not identical as
aug(x) is a stochastic transformation. Mean Teacher
[18] replaces one of the terms in eq. (1) with the out-
put of the model using an exponential moving average of
model parameters. This approach has been empirically
found to significantly improve the results. The original
MixMatch [2] approach utilizes a form of consistency reg-
ularization through the use of standard data augmentation
for images (random horizontal flips and crops). With the in-
put space being discrete and complex in the case of vision-
and-language datasets, it’s non-trivial to apply the data aug-
mentation.

2.1.2 Entropy Minimization

For more confident predictions, a common hypothesis
is that the classifier’s decision boundaries should remain
within the low-density regions of the marginal data distri-
bution. [7] suggested to use a loss term which minimizes
the entropy of the predicted distribution pm(y | x; θ) on
unlabeled data x. MixMatch [2] implicitly achieves en-
tropy minimization through the use of a “sharpening” func-
tion on the target distribution over augmented sets of un-
labeled data. Since we omit the data augmentation step in

our method, the entropy minimization is achieved by con-
structing hard (1-hot) labels from guessed predictions on
unlabeled data. Pseudo-Label [10] suggests a similar
approach of hard-labeling the high-confident predictions on
unlabeled data and using them as training targets in a stan-
dard cross-entropy loss.

2.1.3 Traditional Regularization

Regularization refers to the general approach of imposing a
constraint on a model to make it harder to memorize the
training data, and therefore hopefully make it generalize
better to unseen data [8]. MixMatch uses weight-decay by
penalizing the L2 norm of the model parameters. The most
interesting part of MixMatch is the utilization of mixup
as both a regularizer (applied to labeled datapoints) and a
semi-supervised learning method (applied to unlabeled dat-
apoints). This, in some sense encourages convex behavior
”between” the examples. For our experiments, we leverage
mixup on the NLVR2 [16] task in a similar way.

2.2. Vision-and-Language Frameworks

After the recent success of BERT [5], a number of
multi-modal frameworks [17], [11], [4] have been proposed
that leverage large-scale pre-training with masked objec-
tives similar to language modeling. These models perform
significantly better than the previous state-of-the-art meth-
ods on several language-and-vision tasks. These frame-
works serve as proxies for semi-supervised learning, al-
lowing sample efficient learning of downstream tasks [21].
In this project, we use the pre-trained LXMERT (Figure 1)
framework for all our experiments. LXMERT is essentially
a large scale Transformer [19] model, consisting of three
encoders — an object relationship encoder, a language en-
coder, and a cross-modality encoder. For our SSL experi-
ments, we finetune LXMERT on NLVR2 [16] with limited
labels.

Figure 1. (Source: Tan et al. [17]) For our experiments, we
have used the pre-trained LXMERT model. This figure shows
the pipeline (including the 3 encoders) for learning vision-and-
language cross-modality representations. ‘Self’ and ‘Cross’ are
abbreviations for self-attention sub-layers and cross-attention sub-
layers, respectively. ‘FF’ denotes a feed-forward sub-layer.

2

3. Method

In this section, we discuss the vanilla MixMatch [2] ap-
proach in detail. This method obtained state-of-the-art SSL
results by a significant margin at the time of release. We
then go on to describe the challenges of using MixMatch
on vision-and-language tasks as is, and then go on to pro-
pose our modifications, most of which we have imple-
mented as a part of this project.

3.1. The Original MixMatch Algorithm

In their paper, Berthelot et al. refer to MixMatch as
being a ”holistic” framework that incorporates the ideas
and components from the dominant paradigms of SSL (dis-
cussed in Section 2.1).

3.1.1 Data Augmentation

Typical to most SSL methods, MixMatch also involves
data augmentation both on labeled and unlabeled data. For
each xb in the batch of labeled data X , a transformed ver-
sion x̂b = aug(xb) is generated. For each ub in the batch
of labeled data U , K such transformations ûb,k = aug(ub)
(k ∈ (1, ...,K)) are generated. For an image classification
task, it maybe trivial, but for tasks with textual or multi-
modal inputs, this step is hard owing to their discreteness.

3.1.2 Label Guessing

For each unlabeled example in U , MixMatch produces a
“guess” for the example’s label using the model’s predic-
tions. This guess is later used in the unsupervised loss term.
To do so, the average of the model’s predicted class distri-
butions across all the K augmentations of ub by

qb =
1

K

K∑
k=1

pm(y | ûb,k; θ) (2)

This enforces consistency regularization amongst the aug-
mentations of unlabeled examples. Over this averaged class
prediction, an additional step of sharpening is applied to in-
duce low-entropy guessing. A common approach of adjust-
ing the ”temperature” of the categorical distribution can be
defined by,

Sharpen(p, T)i =
p
1/T
i∑L

j=1 p
1/T
j

(3)

where p is an input categorical distribution and T is a hy-
perparameter. In the context of MixMatch, they use qb =
Sharpen(qb, T) as the target distribution for the model pre-
diction for any ub,k an augmentation of ub. It can be seen

that lowering the temperature T induces low-entropy pre-
dictions by the model. Since we have omitted the data aug-
mentation step in our current implementation, we enforce
hard labeling over the guessed predictions.

Figure 2. (Source: Berthelot et al. [2]) Diagram of the label
guessing process proposed in original MixMatch. They applied
stochastic data augmentation to each unlabeled image K times, and
each augmented image was fed through the classifier. Then, the
average of these K predictions was “sharpened” by adjusting the
distribution’s temperature T .

3.1.3 mixup Interpolation

The authors modify the originally proposed mixup [24]
regularization method, and use it to mix both labeled sam-
ples and unlabeled samples with label guesses. A pair of
two examples (x1, p1) and (x2, p2), a ”mixed-up” sample
can be computed by,

λ ∼ Beta(α, α) (4)
λ′ = max(λ, 1− λ) (5)
x′ = λ′x1 + (1− λ′)x2 (6)
p′ = λ′p1 + (1− λ′)p2 (7)

where α is a hyperparameter. Through (5), it is ensured that
x′ is closer to x1 than x2.

To apply the mixup interpolation, it is important to col-
lect the augmented labeled examples and the augmented
unlabeled examples with guessed labels in separate collec-
tions.

X̂ = ((x̂b, pb); b ∈ (1, ..., B)) (8)

Û = ((x̂b,k, pb); b ∈ (1, ..., B), k ∈ (1, ...,K)) (9)

To create a data source for mixup, is formed by combin-
ing and shuffling X̂ and Û . Now, for each ith sample in
X̂ , mixup(X̂i, Ŵ)i is computed and added to a new col-
lection X̂ ′. Then, Û ′ is populated with mixup(Ûi, Ŵi+|X̂ |)

for i ∈ (1, ..., |Û |), using the remainder of Ŵ . In sum-
mary, the strategy is to transform X̂ into X̂ ′, a collection of
artificial labeled samples having undergone data augmenta-
tion and mixup(potentially with an unlabeled sample); and
Û into Û ′, a collection of multiple augmentations of each
unlabeled sample with corresponding labeled guesses and
mixup. In contrast, we simply mixup the samples directly
from collections X and U , dropping the data augmentation
step.

3

3.1.4 Loss Function

Samples from these processed batches X̂ ′ and Û ′ are used
to compute semi-supervised loss,

LX =
1

|X̂ ′|

∑
x,p∈X ′

H(p, pm(y | x; θ)) (10)

LU =
1

L|Û ′|

∑
u,q∈U ′

||q − pm(y | x; θ)||22 (11)

L = LX + λULU (12)

where L is the number of unique class labels, H(p, q) is the
cross-entropy loss between the distributions p and q, and
λU is a hyperparameter. The authors claim that L2 distance
between the predicted and the guessed labels of unlabeled
mixed-up examples keeps the loss term bounded and less
sensitive to incorrect predictions. For our experiments, we
do not alter the loss terms.

3.2. MixMatch on Vision+Language Tasks

Vision-and-language tasks require an understanding of
visual concepts, language semantics, and, most importantly,
the alignment and relationships between these two modal-
ities. Most tasks like VQA [6], NLVR2 [16], VCR [22]
have a complex multi-modal input space containing text as
well image(s). This discreteness in the input space makes
it difficult to extend the existing semi-supervised learning
approaches for these multi-modal tasks. Other text gen-
eration tasks like image captioning involve a discrete and
unbounded output space which is harder to deal with in a
limited labeled data setting. From the discussion in Sec-
tion 3.1 and the results in [2], we conclude that MixMatch
is a promising SSL strategy for image classification task,
though there are significant issues to apply this approach
to a task on vision-and-language. In the following subsec-
tions, we discuss the challenges in extending MixMatch
on a variety of multi-modal tasks. However, in the inter-
est of time, we restrict our experiments just to the NLVR2
dataset. Figure 3 gives a summary of the task through two
examples.

3.2.1 Issues

From what we discussed earlier (Section 3.1), MixMatch
works so well because of its holistic approach towards in-
corporating the three dominant principles of SSL. Although
it’s hard to extend all of these three principles for these vi-
sion -and-language tasks:

• Consistency Regularization: As discussed earlier,
data augmentation is one of the most common ap-
proaches to enforce consistency regularization in the
training set. For tasks with textual inputs, it is non-
trivial to generate grammatically valid augmentations

Figure 3. (Source: Suhr et al. [16]) Two examples from NLVR2.
Each caption along with a pair of associated images comprise of
the input space. The task is to predict if the caption is True or
False. The examples require addressing challenging semantic phe-
nomena, including resolving twice ... as to counting and compar-
ison of objects, and composing cardinality constraints, such as at
least two dogs in total and exactly two.

due to the discrete nature of text. The common tech-
niques accounting for this—paraphrase generation us-
ing back-translation, word replacement [20]—are un-
reliable since they distort semantics or lead to gram-
matically invalid inputs.

Another roadblock in adopting MixMatch to
LXMERT (our choice of framework) is the discrete
visual input space. LXMERT uses pre-trained Faster R-
CNN [13] features of the input images. Faster R-CNN
features are generally unaffected by perturbations of
the input space (since image semantics are preserved)
removing the benefits of consistency regularization.

• Entropy Minimization: For a task that is not classifi-
cation (i.e. involving structured prediction or text gen-
eration), it’s hard to guess the predictions and average
these predictions over the augmented datasets. This
is because the output space has an exponentially large
support making the computation of the normalization
constant in marginals intractable. For instance, in im-
age captioning models it is computationally infeasible
to compute the full marginal over captions.2

• mixup Interpolation: It is not possible to perform

2While it is possible to sample sequential models without replace-
ment [9], it’s unclear how these samples could be used to achieve entropy
minimization.

4

mixup on discrete input spaces since it requires a lin-
ear interpolation of the inputs which will likely result
in points outside the support of the input space. In Vi-
sion+Language tasks, the input space has text, which
is a discrete object. Similar to the issues under Con-
sistency Regularization, Faster-RCNN feature inputs
(in place of continuous images, are also discrete and
cannot be directly used for mixup interpolation.

3.2.2 Proposed Solutions

In this section we propose solutions to each of the issues dis-
cussed in the previous section, and describe how we extend
MixMatch to Vision+Language tasks. Note that we did not
have sufficient time to complete the proposed modification
for Consistency Regularization and avoided this regulariza-
tion in our MixMatch implementation.

• Consistency Regularization: Discrete objects such as
words are typically fed into deep neural networks by
dense embedding vectors. Inspired by [23], we pro-
pose augmenting the dataset with consistent labels by
adding gaussian noise to the dense embedding vectors
of the discrete objects.

• Entropy Minimization: We use only the argmax pre-
diction (hard labeling) to minimize entropy. Since we
focus on a binary classification task (NLVR2), entropy
minimization is not problematic.

• mixup Interpolation: To perform mixup on tex-
tual input spaces, we experiment with two strategies.
First, we qualitatively analyze the outputs of a pre-
trained text generation model GPT-2 [12] conditioned
on the latent space interpolation of two sentences (us-
ing a recent technique for inducing latent spaces onto
pretrained language models [15]). After noticing only
lexical overlaps in the interpolated outputs and no se-
mantic mixture, we perform mixup on the dense en-
coded LXMERT representations rather than the inputs
themselves.

4. Experiments
In this section we describe the experimental details and

the associated findings.

4.1. Interpolating Text using GPT-2

We conduct a preliminary experiment to assess the
feasibility of interpolating sentences. As discussed in the
previous section, this is required for the mixup step of the
MixMatch algorithm.

Setup: We leverage a recently introduced technique [15]
to create a bijective mapping between sequences and vec-
tors in a latent space, leveraging the knowledge of a
pre-trained language model. We slightly modify the
algorithm3 to make it compatible with the pre-trained
state-of-the-art language model GPT-2 [12]. With this
setup, we map two sentences into the latent space and
map their interpolation back into the sequence space. To
improve the generation quality, we fine-tune GPT-2 on the
NLVR2 training set inputs before interpolation.

Results: We present qualitative results in Table 1. Since
the model is built using a fluent language model GPT-2,
interpolations tend to be grammatically valid (even if not
pragmatic / meaningful). As evident from the table, interpo-
lations tend to be lexical (having word overlaps) rather than
semantic (mixture of the meaning of the two sentences).
This encourages the interpolation of the dense representa-
tions of the text inputs rather than the sentences themselves
during mixup.

4.2. Cross-Modal MixMatch on LXMERT

We conduct a series of experiments on the pretrained
LXMERT model with NLVR2 dataset. With each experi-
ment, we move a step closer to our proposed version of the
MixMatch technique.

Setup: The details of fine-tuning LXMERT with the
NLVR2 dataset have been mentioned in their paper [17].
We use LXMERT to encode the two image-statement pairs
(img0, s) and (img1, s) for each example, where img0
and img1 are the object detection feature vectors (from
pretrained Faster R-CNN [13]) of the two images and s is
the associated textual caption. Then, we n train a classifier
based on the concatenation of the two cross-modality
outputs in various limited training data settings.

Partial Data Baselines: To set baselines for any semi-
supervised learning strategy, we perform this naive initial
experiment with limited training data and report the results
in Table 2.

Vanilla Self-Training: We use the model, learned from
the labeled examples, to make hard guesses on the unla-
beled examples. We, then, re-use these unlabeled samples
for training this model further. We do this in two different
ways — 1) batch-wise: training on all the labeled exam-
ples for multiple epochs, then, making guesses for all the
unlabeled examples and finally, re-training the model with
both collections of examples from the pre-trained check-

3Instead of adding the latent vectors to the hidden representations of
the language model, we add them to the input embeddings of the GPT-2
transformer.

5

λ value Example 1 Example 2

0.0 At least one panda is playing with a bubble. There is exactly one sink in one of the images.
0.2 At least one panda is playing with a toy gun. There are two dogs in the right image.
0.4 At least one dog is standing on the side of green

grass.
There are two dogs in the image on the right.

0.6 A single white building with a chimney is on the left
side of white roof.

At least two round tables are at the bar in the image
on the right.

0.8 A red chimney rises from a white chimney. At least two round plates are v in the image on the
right.

1.0 A red chimney rises from a yellow building with a
thatched roof.

At least two round plates are clearly visible in the
image on the right.

Table 1. Interpolation between sentences from the NLVR2 dataset. This was done by generating sentences from a latent space induced
over a pretrained language model [15]. Notice that the interpolations, while grammatically correct, tend to show lexical overlap instead of
semantic overlap.

Fraction 10% 25% 50% 100%

Performance 61−63% 67−69% 71.4% 74.4%

Table 2. Training the model with limited labeled data only. Frac-
tion refers to amount of the NLVR2 training set used, while Per-
formance refers to the classification test accuracy.

Fraction Labeled 10% 25% 50%

Performance (batch-wise) 58.2% 62.1% −
Performance (iterative) 64.2% 68.4% 70.7%

Table 3. Training the model using vanilla self-training. Fraction
refers to amount of labeled samples used from the NLVR2 training
set. The rest were used as unlabeled examples. The batch-wise
training experiment for 50% did not converge.

Fraction 10% 25% 50% 100%

Performance 60.5% 61.4% 71.9% 74.1%

Table 4. Training the model with only the ”mixed-up” labeled
examples in the limited data setting.

point; 2) iterative: in each training iteration, learn from
the labeled mini-batch Xmini, guess hard labels for the un-
labeled mini-batch Umini, and re-learn from the combined
mini-batch (X + U)mini. We report the results in Table 3.

mixup Regularization on Labeled Data: We per-
formed the initial experiment of using limited training data
with mixup interpolation between pairs of labeled exam-
ples. Every mini-batch is interpolated with a shuffled ver-
sion of itself with hope of better generalization. We tune the
hyperparameter α for this experiment. Table 4 contains the
results.

The MixMatch Pipeline: Ignoring the data augmenta-

Fraction Labeled 10% 25% 50%

Performance (iterative) 62.9% 65.7% 71.7%

Table 5. Training the model with the proposed MixMatch ap-
proach. As proposed originally, we apply MixMatch in the itera-
tive setting only.

tion step, we introduce some modifications to the original
MixMatch approach. A brief summary of the pipeline —
the model takes in mini-batches of labeled and unlabeled
data; performs label-guessing and sharpening (rounding the
soft probabilities) on the unlabeled mini-batch; creates a
new mini-batch after shuffling and combining the two mini-
batches of labeled data and unlabeled data with guessed
labels; performs mixup as described in 3.1.3, to produce
the transformed mini-batches, that eventually participate in
learning using the semi-supervised loss function (12). We
tune hyperparameters α and λU for this experiment. Refer
to Table 5 for results.

5. Conclusion
The results of the experiment with GPT-2, though inter-

esting, do not encourage using it as a substitute for tex-
tual interpolation in the input space. The subsequent ex-
periments towards deploying SSL on LXMERT, don’t seem
produce consistent results. It’s astonishing that self-training
performances (Table 3) are worse (or about the same) when
compared to the partial data baselines (Table 2). This di-
rects us to think about the training stability of the pretrained
LXMERT framework, especially when trained with lower
fractions of labeled data. Even using the vanilla mixup
on labeled examples (Table 4) does not improve the perfor-
mance when compared to the baselines. The hope of gener-
alization is not fulfilled as far as this dataset is concerned.

Training with our flagship approach (Table 5) produces

6

even worse results when compared to the vanilla self-
training (iterative) approach. Though we did not employ
any data augmentation step with it, the bigger worry is the
poor performance of the vanilla self-training method. Nev-
ertheless, we have looked into some other modifications that
could improve the performance of our MixMatch.

6. Future Work
Due to the constraints on time, we couldn’t experiment

with other modifications as planned. Here, we list down two
major ideas as possible directions for future work.

• As a means to encourage consistency regularization,
we propose to augment both the visual and textual em-
beddings (see Figure 1 for each input by adding noise
[23]. Since we finetune the pretrained LXMERT for
our experiments, this embedding space should repre-
sent the inputs suitably well. Gaussian distribution,
being a more natural choice for noise sampling, can
be introduced this way,

Xemb ← Xemb � e, e ∼ N (I, σ2I) (13)

where Xemb is an embedding vector, e is a noise ma-
trix and � is the element-wise multiplication.

• Currently, the model performs mixup computation on
the cross-modality responses (Figure 1) of LXMERT.
We plan to move this computation back to the embed-
ding space (Figure 4), which is also where we propose
to perform the data augmentation step. The hope is
that LXMERT encoders will learn better representa-
tions with the transformed input embeddings.

Figure 4. A modification in the current approach, can be experi-
mented with in future.

References
[1] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,

C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question
answering. In ICCV, 2015.

[2] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot,
A. Oliver, and C. Raffel. Mixmatch: A holistic approach
to semi-supervised learning. In NeurIPS, 2019.

[3] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE
Transactions on Neural Networks, 2009.

[4] Y.-C. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan,
Y. Cheng, and J. Liu. Uniter: Learning universal image-text
representations. arXiv preprint arXiv:1909.11740, 2019.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the v in vqa matter: Elevating the role of
image understanding in visual question answering. In CVPR,
2017.

[7] Y. Grandvalet and Y. Bengio. Semi-supervised learning by
entropy minimization. In NIPS, 2005.

[8] G. E. Hinton and D. van Camp. Keeping the neural networks
simple by minimizing the description length of the weights.
In COLT, 1993.

[9] W. Kool, H. Van Hoof, and M. Welling. Stochastic
beams and where to find them: The gumbel-top-k trick for
sampling sequences without replacement. arXiv preprint
arXiv:1903.06059, 2019.

[10] D.-H. Lee. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
ICML Workshop on Challenges in Representation Learning,
2013.

[11] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining
task-agnostic visiolinguistic representations for vision-and-
language tasks. arXiv preprint arXiv:1908.02265, 2019.

[12] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. Language models are unsupervised multitask
learners. 2019.

[13] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, 2015.

[14] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization
with stochastic transformations and perturbations for deep
semi-supervised learning. In NIPS, 2016.

[15] N. Subramani, S. Bowman, and K. Cho. Can unconditional
language models recover arbitrary sentences? In NeurIPS,
2019.

[16] A. Suhr, S. Zhou, A. Zhang, I. Zhang, H. Bai, and Y. Artzi.
A corpus for reasoning about natural language grounded in
photographs. arXiv preprint arXiv:1811.00491, 2018.

[17] H. Tan and M. Bansal. Lxmert: Learning cross-modality en-
coder representations from transformers. In EMNLP, 2019.

[18] A. Tarvainen and H. Valpola. Mean teachers are better role
models: Weight-averaged consistency targets improve semi-
supervised deep learning results. In NIPS, 2017.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. In NIPS, 2017.

[20] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V.
Le. Unsupervised data augmentation. arXiv preprint
arXiv:1904.12848, 2019.

[21] D. Yogatama, C. d. M. d’Autume, J. Connor, T. Kocisky,
M. Chrzanowski, L. Kong, A. Lazaridou, W. Ling, L. Yu,
C. Dyer, et al. Learning and evaluating general linguistic
intelligence. arXiv preprint arXiv:1901.11373, 2019.

7

[22] R. Zellers, Y. Bisk, A. Farhadi, and Y. Choi. From recogni-
tion to cognition: Visual commonsense reasoning. In CVPR,
2019.

[23] D. Zhang and Z. Yang. Word embedding perturbation for
sentence classification. arXiv preprint arXiv:1804.08166,
2018.

[24] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.
mixup: Beyond empirical risk minimization. In ICLR, 2018.

8

